Divergence-Measure Fields and Hyperbolic Conservation Laws
نویسندگان
چکیده
We analyze a class of L∞ vector fields, called divergence-measure fields. We establish the Gauss-Green formula, the normal traces over subsets of Lipschitz boundaries, and the product rule for this class of L∞ fields. Then we apply this theory to analyze L∞ entropy solutions of initial-boundary-value problems for hyperbolic conservation laws and to study the ways in which the solutions assume their initial and boundary data. The examples of conservation laws include multidimensional scalar equations, the system of nonlinear elasticity, and a class ofm×m systems with affine characteristic hypersurfaces. The analysis in L∞ also extends to L.
منابع مشابه
Euler Equations and Related Hyperbolic Conservation Laws
Some aspects of recent developments in the study of the Euler equations for compressible fluids and related hyperbolic conservation laws are analyzed and surveyed. Basic features and phenomena including convex entropy, symmetrization, hyperbolicity, genuine nonlinearity, singularities, BV bound, concentration, and cavitation are exhibited. Global well-posedness for discontinuous solutions, incl...
متن کاملMeasure-Theoretic Analysis and Nonlinear Conservation Laws
We discuss some recent developments and trends of applying measure-theoretic analysis to the study of nonlinear conservation laws. We focus particularly on entropy solutions without bounded variation and Cauchy fluxes on oriented surfaces which are used to formulate the balance law. Our analysis employs the Gauss-Green formula and normal traces for divergence-measure fields, Young measures and ...
متن کاملMultidimensional conservation laws : overview , problems , and
Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented a...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999